STiCM

Select / Special Topics in Classical Mechanics

P. C. Deshmukh

Department of Physics Indian Institute of Technology Madras
Chennai 600036
pcd@physics.iitm.ac.in

STiCM Lecture 19

Unit 6 : Introduction to Einstein's

Unit 6: Lorentz transformations.

Introduction to

Special Theory of Relativity

Learning goals:

Discover that the finiteness of the speed of light and
its constant value in all inertial frames of reference requires us to alter our perception of 'simultaneity'.

This leads to the notion of length-contraction and time-dilation.
Understand how Lorentz transformations account for these.

Furthermore:

We shall learn about the famous 'twin paradox' and how to resolve it....
..... and also about some other fascinating consequences of the STR......
..... Electromagnetic field equations, GTR, GPS
clocks,

2010 Camaro vs. 2010 Mustang

Galilean Relativity

PCD_STiCM

In Galilean Relativity:

$>$ The laws of mechanics are the same in all inertial frames of reference.
> The principle of causality/determinism involve the same interactions resulting in the same effects seen by observers in all inertial frames of references.
$>$ Time t is the same in all inertial frames of references.
PCD_STiCM

What is the velocity of the
 oncoming car?

... relative to whom?

PCD_STiCM

Why did the chicken cross the road?

The chicken could be wondering why it is the road that crossed her!

What would happen if the object
of your observations is light?

Danish astronomer Ole Roemer (1644-1710)

Roemer observed (1675-1676) the timing of the eclipses of Jupiter's moon lo.
Christian Huygens used Roemer's data to calculate the speed of light and found it to be large, but finite! PCD_STiCM

Light (EM waves) travels at the constant speed in all inertial frames of references.
Experimental proof: A. A. Michelson and E. W. Morley, "On the Relative Motion of the Earth and the Luminiferous Ether, " American Journal of Science, 34, 333-345 (1887).

The actual apparatus that was used in the
Michelson-Morley experiment

Michelson and Morley mounted their apparatus on a stone block floating in a pool of mercury, and rotated it to seek changes in relation to the motion of the earth in its orbit around the sun. They arranged one set of light beams to travel parallel to the direction of the earth's motion through space, another set to travel crosswise to the motion.
http://www.aip.org/history/einstein/ae20.htm
It is debatable whether Einstein paid heed to this particular experiment, but his work provided an explanation of the unexpected result through a new analysis of space and time. http://www.aip.org/history/einstein/emc1.htm

CODATA recommended values of the fundamental physical constants: 2006*

Charles Coulomb 1736-1806
..... other
developments in
Physics
Carl Freidrich Gauss
1777-1855

Andre Marie Ampere 1775-1836

Michael Faraday 1791-1867

Loop : Stationary

Lorentz force predicts:

(a) Clockwise Current
(b) Counterclockwise Current
$\sqrt{ }(\mathrm{c})$ No Current

Loop : Dragged to the right.

Faraday's experiments

Loop held fixed; Magnetic field dragged toward left. *NO* Lorentz force $q(\vec{v} \times \vec{B})$

Current: identical!

Strength of B decreased. Nothing is moving, but still, current seen!!!

$$
I \propto \frac{d B}{d t}
$$

Einstein:
Speccial_sticm Theory of Relativity

The equations of James Clerk Maxwell

$$
\vec{\nabla} \bullet \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\rho}
$$

$$
\varepsilon_{0}
$$

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

Changing magnetic field produces a rotational electric field.
$\vec{\nabla} \bullet \vec{B}=0$
$\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t} \begin{aligned} & \text { PCD_stiffield }\end{aligned} \begin{aligned} & \text { field product magnetic a } \\ & \text { rotation }\end{aligned}$

$$
\mathrm{v}=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}=c=2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Maxwell observed that v obtained as above agreed with the speed of light.

Maxwell's conclusion: "light is an electromagnetic disturbance propagated through the field according to electromagnetic laws"

Speed of light: does not change...
...from one inertial frame
of reference to another...... $v=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}=c$

STR \longleftrightarrow ED
... it is 'time' and 'length' that change!

Electrodynamics \& STR

The special theory of relativity is intimately linked to the general field of electrodynamics.
Both of these topics belong to 'Classical Mechanics'.

James Clerk Maxwell 1831-1879

Albert Einstein 1879-1955

Galilean \& Lorentz Transformations. Special Theory of Relativity.

Galileo Galilei 1564-1642

Hendrik Antoon Lorentz 1853-1928

Smoking is

 injurious to health!Albert Einstein 1879-1955

Albert Einstein's ANNUS MIRABILIS 1905

(i) Brownian motion: established the study of fluctuation phenomena as a new branch of physics..... ... statistical thermodynamics, later developed by Szilard and others, and for a general theory of stochastic processes.
(ii) Photoelectric Effect - the work that was cited explicitly in Einstein's Nobel Prize!
(iii) Special Theory of Relativity

STR Upshots:

- Physical laws are the same in all inertial reference systems.
- Speed of light in a vacuum is a universal constant for all observers regardless of the motion of the observer or

$$
\begin{aligned}
& \text { of the source of light. } \\
& \text { PCD_STicm }
\end{aligned}
$$

Albert Einstein's ANNUS MIRABILIS 1905
STR Upshots:

- Max velocity attainable is that of light.
- Objects appear to contract in the direction of motion;
- Rate of moving clock seems to decrease as its velocity increases.
- Mass and energy are equivalent and interchangeable.

Einstein's theory of relativity:
1905: Special Theory of Relativity

1915, 16: General Theory of Relativity

STR is a 'special' case of GTR.

In STR, we compare 'physics' seen by observers in two frames of references moving at constant velocity \vec{v} with respect to each other.

1. Maxwell's equations are correct in all inertial frames of references.
2. Maxwell's formulation predicts : EM waves travel at the speed $c=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}$.
3. HENCE, light (EM waves) travels at the constant speed in all inertial frames of references.

$$
c=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}
$$

Notion of TIME itself would need to change

Einstein was clever enough, \& bold enough, to stipulate just that!

What happens to our notion of
space?

$$
\text { speed }=\frac{\text { distance }}{\substack{\text { time } \\ \text { PCD_sticm }}}
$$

We will take a Break...
......Any questions?
pcd@physics.iitm.ac.in

Next L20: STR
The way we think about space and time must change; it must take into account our motion with respect to each other, even if it is at a constant velocitym

STiCM

Select / Special Topics in Classical Mechanics

P. C. Deshmukh

Department of Physics Indian Institute of Technology Madras
Chennai 600036
pcd@physics.iitm.ac.in

STiCM Lecture 20

Unit 6 : Special Theory of Relativity
Reconciliation with the constancy of the speed of light

Just what does it mean to say that

 "Light (EM waves) travels at the constant speed in all inertial frames of references" ?
$\hat{\mathbf{e}}_{\mathrm{z}^{\prime}}$ The rocket frame moves velocity fc where $0<f<1$.

COUNTER-INTUITIVE?

Speed of light in a vacuum is a universal constant for all observers regardless of the motion of the observer or of the light source

MEASUREMENTS

Event: A physical event/activity that takes place at (x, y, z) at the instant t.
SPACE-TIME COORDINATES of the EVENT: (x, y, z, t), in a frame of reference S .

In another frame S^{\prime}, the coordinates are: ($\left.x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)$.
We must revise our notions of 'simultaneity'.
Events that are 'simultaneous' in one frame of reference S are not so in another frame of reference S^{\prime} that is moving relative to S.

PCD_STiCM

畀

(1)S detects both the flashes simultaneously.
(2)Light from both explosions travels at equal speed toward S.
(3) M would expect his sensor to record light from the right-cracker, before it senses light from the one on our left side.

Events that seem SIMULTANEOUS

 to the stationary observer do not seem to be so to the moving observer - who also is in an inertial frame!So, let us, in all humility, reconsider our notion of TIME and SPACE!

First, we examine how a clock clocks TIME. PCD_STICM
‘LIGHT CLOCK’ ‘TIME KEEPING COUNTER’

Light Source Light Detector the next pulse.
Both of these: infinitesimal size
gedanken experiment
The Light Clock moves at velocity \square in a frame of reference S.

$$
\text { distance }=\text { time } \times \text { speed }
$$

$$
\left[\left(\frac{1}{2} \Delta t\right) c\right]^{2}=h^{2}+\left[\left(\frac{1}{2} \Delta t\right) \mathrm{v}\right]^{2}
$$

$$
\Rightarrow \Delta t=\frac{2 h / c}{\sqrt{1-v^{2} / c^{2}}}=\frac{\Delta t^{\prime}}{\sqrt{1-\beta^{2}}}
$$

where $\beta=\mathrm{v} / c$.

$$
\Delta t^{\prime}=t_{2}^{\prime}-t_{1}^{\prime}=2 h / c=\Delta \tau
$$

$$
\Delta t=\frac{2 h / c}{\sqrt{1-\mathrm{v}^{2} / c^{2}}}=\frac{\Delta \tau}{\sqrt{1-\beta^{2}}}
$$

$$
\beta=\mathrm{v} / \mathrm{c}\langle 1
$$

$$
\Delta \tau=\Delta t^{\prime}=P R O P E R \text { TIME }
$$

$\Delta t>\Delta \tau$
Time Dilation

Conclusions do not depend on the use of the 'Light Clock'. Any pelociknwould give the same result.

If one of the

twins travels,
the
home-bound
sibling ages more than the travelling one!
$\Delta t=\frac{2 h / c}{\sqrt{1-\mathrm{v}^{2} / c^{2}}}=\frac{\Delta \tau}{\sqrt{1-\beta^{2}}}$
$\beta=\mathrm{v} / \mathrm{c}$
$\Delta \tau=\Delta t^{\prime}=$ PROPER TIME
$\Delta t>\Delta \tau$
Time Dilation
"Moving clocks go slow; time interval between two ticks is longer when measured in a frame in which the clock is moving "

In as much as we have had to modify our notion of time-interval, we are required to modify our notion of space-interval as well.

Thus, we are led not only to Time Dilation but also to Length Contraction.

Both of these modifications become necessary on account of the 'counter-intuitive' fact that "Light (EM waves) travels at the constant speed in all inertial frames of references". an orange-star and a blue-star.

In frame S, the stars are at rest at a length L apart from each other, and a rocket flies by as shown.

An observer in frame S carries out measurements of lengths, and of time intervals.

In the ROCKET-FRAME-S', the stars \mathbf{O} and move to the left at the same relative speed.

S': Rocket frame

In frame S, the objects are at rest at a length L apart from each other.
This LENGTH L is therefore the "PROPER LENGTH", I.
In S', the clock is at rest in the rocket and yields, therefore, "PROPER TIME".

S': Rocket Frame
$L=\Delta x=x_{\text {orange }}-x_{\text {blue }}$
is the LENGTH (distance) between the two stars in frame S.
Also, in this frame, the time measured for the journey is $\Delta \mathrm{t}$.
Rockets's speed $=\mathrm{v}=\frac{\mathrm{L}}{\Delta \mathrm{t}}=\frac{l}{\Delta t}$,
where l is the PROPER LENGTH
Note! The stars are fixed in space in frame S.

In the ROCKET-FRAME-S', it is the two stars that move to the left at

 speed $\mathrm{v}=\frac{\mathrm{L}^{\prime}}{\Delta \mathrm{t}^{\prime}}$, where $\Delta \mathrm{t}^{\prime}$ is the PROPER TIME $(\Delta \tau)$ measured in S ' for the blue star to travel the LENGTH L '.$$
\mathrm{v}=\quad \frac{\mathrm{L}^{\prime}}{\Delta \mathrm{t}^{\prime}}=\frac{\mathrm{L}^{\prime}}{\Delta \tau}=\frac{\mathrm{L}^{\prime}}{\left(\sqrt{1-\beta^{2}}\right)(\Delta t)}
$$

$\Rightarrow L^{\prime}=l \sqrt{1-\beta^{2}} \leq l$
LORENTZ (LENGTH)
CONTRACTION

$$
S^{\prime}: \text { Rocket frame }
$$

Hendrik Antoon Lorentz 1853-1928

1902 Nobel Prize in Physics
"in recognition of the extraordinary service they rendered by their researches into the influence of magnetism upon radiation phenomena"

Lorentz contraction!

Lorentz moving up!

http://www.bun.kyoto-u.ac.jp/~suchii/lorentz.tr.html

LORENTZ transformations (x, y, z, t) to $\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)$

Requirements:

Ensure that speed of light is same in all inertial frames of references.

Transform both space and time coordinates.

Transformation equations must agree with Galilean transformations when V<<<C.
Origins O and O' of the two frames S and S ' coincide at $\mathrm{t}=0$ and $\mathrm{t}^{\prime}=0$.

$\mathrm{x}^{\prime}=\gamma(\mathrm{x}-\mathrm{vt})$
$y^{\prime}=y$
$z^{\prime}=\mathrm{Z}$
$\mathrm{t}^{\prime}=\gamma\left(\mathrm{t}-\frac{\mathrm{vx}}{\mathrm{c}^{2}}\right)$
Lorents transformations transform the space-time coordinates of ONE EVERSTf Sicm

$$
\begin{aligned}
& \mathrm{x}=\gamma\left(\mathrm{x}^{\prime}+\mathrm{vt} \mathrm{t}^{\prime}\right) \\
& \mathrm{y}=\mathrm{y}^{\prime} \\
& \mathrm{z}=\mathrm{z}^{\prime} \\
& \mathrm{t}=\gamma\left(\mathrm{t}^{\prime}+\frac{\mathrm{vx}}{\mathrm{c}^{2}}\right)
\end{aligned}
$$

$\gamma=\frac{1}{\sqrt{1-\frac{\mathrm{v}^{2}}{c^{2}}}}$

$$
=\frac{1}{\sqrt{1-\beta^{2}}}
$$

Note $: \gamma \rightarrow 1$ as $\mathrm{v} \rightarrow 0$.

Main Reference:

‘Physics for Scientists and Engineers’, II Edition, by

Randall D. Knight
(Pearson, Addison-Wesley, 2007)

Both 'time dilation' and

'length contraction' are automatic consequences of the constancy of speed of light in all inertial frames of references.

Next L21: STR

We will take a break...
...... Any questions?

STiCM

Select / Special Topics in Classical Mechanics

P. C. Deshmukh

Department of Physics Indian Institute of Technology Madras
Chennai 600036
pcd@physics.iitm.ac.in

STiCM Lecture 21

Unit 6 : Special Theory of relativity
Twin Paradox, other STR consequences
"Light (EM waves) travels at the constant speed in all inertial frames of references".
"comarer-intuitive’
'educated intuition'
Consequences:
Length Contraction.
Time Dilation.

Both 'time dilation' and 'length contraction' are automatic consequences of the constancy of speed of light in all inertial frames of references.

$$
\Delta t=\frac{\Delta \tau}{\sqrt{1-\beta^{2}}} ; \quad \beta=\mathrm{v} / \mathrm{c}\left\langle 1 ; \quad L^{\prime}=l \sqrt{1-\beta^{2}} \leq l\right.
$$

- re-interpretation of 'momestlemm' and 'energy'

Seeta and Geeta are identical twins.

Twin Paradox

 Geeta stays at home,and Seeta travels in a rocket at a speed $\frac{\overline{5}^{c}}{5}$ for 3 yrs measured in the rocket-clock (proper time).
Geeta's home-based clock measures
the corresponding time interval as $\Delta t=\frac{\Delta \tau}{\sqrt{1-\beta^{2}}} ; \beta=\mathrm{v} / \mathrm{c}=\frac{4}{5}$.

$$
\Delta t=\frac{\Delta \tau}{3 / 5}=\frac{5}{3}(3 y r s)=5 y r s
$$

$\Delta \tau=\Delta t^{\prime}=$ PROPER TIME
$\Delta t>\Delta \tau \quad$ (Time Dilation).

Geeta has aged
by 5 years during
Seeta's travel over which the latter has aged by only 3 years!
$\sqrt{1-\frac{\mathrm{v}^{2}}{c^{2}}}=\sqrt{1-\frac{(4 / 5 c)^{2}}{c^{2}}}=\frac{3}{5}$

But why should we think this is a paradox? It sure isn't !

Seeta now turns around, and returns at the same speed, thus taking another 3 years
(measured, of course, in her clock in the rocket frame) to return, during which Geeta's clock advances by another 5 yrs.

G	ONWARD SPEED	
$S \rightarrow$	$(4 / 5) c$	$\xrightarrow{*}$
G	RETURN TRIP	
S	SPEED (4/5)c	

During Seeta's round trip then, home-bound Geeta would age by 10 years, and travelling Seeta by only 6 years!

PCD_STiCM
Even this isn't a paradox - of course!

During Seeta's

 round trip then, home-bound Geeta would age by 10 years, and travelling Seeta by 6 years.Symmetry/Equivalence principle in
STR: From the point of view of Seeta's perspective, it is Geeta who appears as the traveling sibling, and would

The two observers
being in equivalent
inertial frames, must
see same 'physics' be therefore younger than SECRticm We have a PARADOX!

Resolution of the 'paradox' would occur if we establish the fact that:

From the points of views of BOTH Geeta and Seeta,
if they looked at their respective clocks, home-bound Geeta would age by 10 years, and traveling Seeta by 6.

In some (published) comments on the twin-paradox, resolution has been sought by invoking

 Seeta's acceleration from the Uturn when she would begin Geeta's chase after 3 years.Other 'explanations' employ GTR!
However, such 'explanations' are not called for.
We resolve the paradox WITHIN the framework of STR without invoking apұoz̧çeleration.

One can do away completely with Seeta's acceleration by considering in our thoughtexperiment a third observer Jayalalitha.

Weren't there a set of triplets, rather than mere twins? This third observer would not undergo any acceleration, but only pass by both Seeta and Geeta and communicate the timeintervals.

Jayalalitha would pass Seeta, and then catch up with Geeta and compare her clock with Geeta's as she crosses her, and then send that information back to Seeta.

The paradox is to be resolved within the framework of STR

- no acceleration of any frame must be invoked.
- GTR is irrelevant here.

Explanation within the

framework of STR, and
without involving any
acceleration of any frame of
reference.

SEETA'S PERSPECTIVE.

Geeta takes off (along $-\hat{e}_{x}$) at 0.8c
Seeta clocks 3 years in her wait, -

- and then take off to catch up with Geeta -
- who continues her travel at the same earlier speed.

Question: At what speed should Seeta travel to catch up with Geeta in 3 additional years as per Seetáscalock?

You \& your Dad plan to go for a dinner at a restaurant that is 5 kms away. Your table is booked for 9pm.

Your Dad starts out at 7pm and walks @ 3 Kms/hr for one hour. After the first hour, he gets a bit tired, but needs to walk only @ 2 kms/hr to reach the restaurant at 9pm.

You start out at 8pm, and must meet your Dad at the restaurant at 9pm. What must be your speed? PCD_STICM

Sum of the velocities, for Seeta to catch up:

$$
\frac{4}{5} c+\frac{4}{5} c=\frac{8}{5} c \gg \mathrm{c}!
$$

... as per Galilean relativity
Impossible for Seeta to get that speed $>\mathrm{c}$

This is not how relative velocity is added!
One must use Lorentz, not Galilean, relativity.

$$
\frac{\mathrm{dx}^{\prime}}{\mathrm{dt}^{\prime}}=\frac{d\left(\gamma\left(x-u_{x} t\right)\right)}{d\left(\gamma\left(t-\frac{u_{x} x}{c^{2}}\right)\right)}=\frac{d\left(x-u_{x} t\right)}{d\left(t-\frac{u_{x} x}{c^{2}}\right)} \Rightarrow \frac{\mathrm{dx}^{\prime}}{\mathrm{dt}^{\prime}}=\frac{\mathrm{v}_{\mathrm{x}} \ominus u_{x}}{1 \Theta \frac{u_{x} \mathrm{~V}_{\mathrm{x}}}{c^{2}}}
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{v}}=\frac{d \vec{r}}{d t} \\
& x^{\prime}=\gamma\left(x-u_{x} t\right) \\
& t^{\prime}=\gamma\left(t-\frac{u_{x} x}{c^{2}}\right) \\
& \gamma=\frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}} \\
& \overrightarrow{\mathrm{v}^{\prime}}=\frac{d \overrightarrow{r^{\prime}}}{d t^{\prime}}=\frac{\mathrm{dx}^{\prime}}{\mathrm{dt}^{\prime}} \hat{e}_{x}+\frac{\mathrm{dy}^{\prime}}{\mathrm{dt}^{\prime}} \hat{e}_{y}+\frac{\mathrm{dz}^{\prime}}{\mathrm{dt}^{\prime}} \hat{e}_{z}
\end{aligned}
$$

$\mathrm{dx}^{\prime} \quad \mathrm{v} \Theta u$ If the frame of reference S^{\prime} is moving in the negative x direction, we shall get:

$$
\frac{\mathrm{dx}^{\prime}}{\mathrm{dt}^{\prime}}=\frac{\mathrm{v}_{\mathrm{x}} \oplus u_{x}}{1 \oplus \frac{u_{x} \mathrm{v}_{\mathrm{x}}}{c^{2}}}
$$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{x}}{ }^{\prime}=\frac{\mathrm{v}_{\mathrm{x}}+u_{x}}{1+\frac{u_{x} \mathrm{v}_{\mathrm{x}}}{c^{2}}} \\
& \mathrm{v}_{\mathrm{y}}{ }^{\prime}=\mathrm{v}_{\mathrm{y}} \\
& \mathrm{v}_{\mathrm{z}}{ }^{\prime}=\mathrm{v}_{\mathrm{z}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{x}}^{\prime}=\frac{\mathrm{v}_{\mathrm{x}}+u_{x}}{1+\frac{u_{x} \mathrm{v}_{\mathrm{x}}}{c^{2}}} \\
& \mathrm{v}_{\mathrm{y}}^{\prime}=\mathrm{v}_{\mathrm{y}} \\
& \mathrm{v}_{\mathrm{z}}{ }^{\prime}=\mathrm{v}_{\mathrm{z}}
\end{aligned}
$$

Seeta clocks 3 years in her

$$
\begin{aligned}
\mathrm{v}_{\text {relative }} & =\frac{\mathrm{v}_{1}+\mathrm{v}_{2}}{1+\frac{\mathrm{v}_{1} \mathrm{v}_{2}}{\mathrm{c}^{2}}}=\frac{(4 / 5) c+(4 / 5) c}{1+\frac{(4 / 5) c(4 / 5) c}{c^{2}}} \\
& =\frac{(8 / 5) c}{1+16 / 25}=\frac{25}{41} \times \frac{8}{5} c=\frac{40}{41} c
\end{aligned}
$$

own clock and must shoot off toward Geeta at a speed of $\frac{40}{41} c$, and in subsequent 3-Seeta-yrs, catching up

Seeta clocks 3 years in her own
clock and must shoot off toward
Will Geeta at a speed of $\frac{40}{41} c$, and in this exactly additional 3-Seeta-yrs,
(i.e., as per Seeta's clock) she must catch up with Geeta.

Constraints: While all this happens, Seeta must clock 3+3=6 yrs in her clock,
and Geeta must clock 1 Ebol/kscin her own clock.

For how many 'home-bound clock years' must Geeta travel (from Seeta's perspective) so that she (G) finds, that as per her own (Geeta's) clock, she has aged by 10 years?

$$
\begin{aligned}
& \Delta \tau=10 \text { years } \\
& \Delta t=\frac{\Delta \tau}{\sqrt{1-\beta^{2}}} ; \beta=\mathrm{v} / \mathrm{c}=\frac{4}{5}=0.8 \\
& 10=\Delta \tau=\Delta t \sqrt{1-\beta^{2}}=\Delta t \sqrt{1-(0.8)^{2}}=\Delta t \sqrt{0.36}=\Delta t \times 0.6 \\
& \Delta t=\frac{10}{0.6}=16.6667 \text { yrs in units of home-bound clock. }
\end{aligned}
$$

How much distance would Geeta travel over this period? distance $=$ speed \times time
$\mathrm{d}=(0.8 c) \times 16.66667=0.8 \times\binom{$ c in $\left.\frac{l y}{y}\right)}{$ PCD_ffich }$\times 16.66667$ yrs $=13.333336$ ly
$\mathrm{d}=(0.8 c) \times 16.66667=0.8 \times\left(c\right.$ in $\left.\frac{l y}{y r}\right) \times 16.66667 y r s=13.333336 l y$
Now, after 3 years of the home-bound clock, Seeta starts off to cover that distance -

We have estimated already that Seeta would travel at
a speed of $\left(\frac{40}{41}\right) c$
How much distance must Seeta now travel to
catch up with Geeta?

$$
13.333336 \text { ly ? }
$$

This distance, for Seeta, must look
Lorentz-contracted!
pCo_STicm

The Lorentz-contracted distance Seeta would need to travel to catch up with Geeta is:

$$
\begin{aligned}
& d^{\prime}=d \sqrt{1-\beta^{2}}=13.333336 \times \sqrt{1-\left(\frac{40}{41}\right)^{2}}=13.333336 \times \sqrt{\frac{1681-1600}{1681}} \\
& d^{\prime}=13.333336 \times \frac{9}{41}=2.926829 l y
\end{aligned}
$$

How much time will Seeta take to travel this distance at the speed $\left(\frac{40}{41}\right) c$?

$$
\text { time }=\frac{\text { distance }}{\text { speed }}=\frac{2.926829 \text { ly }}{\frac{40}{41} \times 1 \frac{l y}{y r}}=2.926829 \times \frac{41}{40}=3 \text { years }
$$

Again, Seeta ages by $3+3$ of her clock's years while
Seta ages by 10 years

Symmetry/Equivalence principle in STR:
No matter whose perspective we consider, it is Geeta who must age by 10 years and Seeta by 6 years.

We see that in either case, Seeta ages by $3+3$ of her clock's years while Geeta ages by 10 years of her own clock years....... No paradox!
...... but then,
in the final analysis, why do our observers have to be 'twins' ? PCD_STiCM

Time Dilation for Particles

Excited states: have an 'intrinsic clock' that determines the half-life of a decay process.

Rate at which the 'intrinsic clock' ticks in a moving frame, as observed by a static observer, is slower than the rate of a static clock.
'half-life' of a moving particles appears, to the static observer, to be increased.

We will take a Break...
...... Any questions?
pcd@physics.iitm.ac.in

$$
\Delta t=\frac{\Delta \tau}{\sqrt{1-\beta^{2}}} ; \quad \beta=\mathrm{v} / \mathrm{c}\left\langle 1 ; \quad L^{\prime}=l \sqrt{1-\beta^{2}} \leq l\right.
$$

Next L22: STR - conclusions Mass-Energy equivalence, STR+QM \rightarrow electron spin, Mass_d Gravity? / GTR

STiCM

Select / Special Topics in Classical Mechanics

P. C. Deshmukh

Department of Physics
Indian Institute of Technology Madras
Chennai 600036
pcd@physics.iitm.ac.in
STiCM Lecture $22 \quad \Delta t=\frac{\Delta \tau}{\sqrt{1-\beta^{2}}} ; \quad \beta=\mathrm{v} / \mathrm{c}\left\langle 1 ; \quad L^{\prime}=l \sqrt{1-\beta^{2}} \leq l\right.$
Unit 6 : Special Theory of relativity - conclusions
mass-energy equivalence
STR+QM \rightarrow electron spin
Mass / Gravity ? / GTR

First few Nobel Prizes in Physics, in reverse chronological order

```
1922 - Niels Bohr
1921 - Albert Einstein
1920- Charles Edouard Guillaume
1919 - Johannes Stark
1918 - Max Planck
1917 - Charles Glover Barkla
1916 - The prize money was allocated to the Special Fund of this prize section
1915 - William Bragg, Lawrence Bragg
1914 - Max von Laue
1913 - Heike Kamerlingh Onnes
1912 - Gustaf Dalén
1911 - Wilhelm Wien
1910 - Johannes Diderik van der Waals
1909 - Guglielmo Marconi, Ferdinand Braun
1908-Gabriel Lippmann
1907 - Albert A. Michelson
1906- J.J. Thomson
1905 - Philipp Lenard
1904 - Lord Rayleigh
1903 - Henri Becquerel, Pierre Curie, Marie Curie
```



```
1901 - Wilhelm Conrad Röntgen
```

Origins O and O' of the two frames S and S ' coincide at $\mathrm{t}=0$ and $\mathrm{t}^{\prime}=0$.

$\mathrm{x}^{\prime}=\gamma(\mathrm{x}-\mathrm{vt})$
$y^{\prime}=y$
$z^{\prime}=\mathrm{Z}$
$\mathrm{t}^{\prime}=\gamma\left(\mathrm{t}-\frac{\mathrm{vx}}{\mathrm{c}^{2}}\right)$
Lorents transformations transform the space-time coordinates of ONE EVERST? .
$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$

$$
=\frac{1}{\sqrt{1-\beta^{2}}}
$$

Note $: \gamma \rightarrow 1$ as $\mathrm{v} \rightarrow 0$.

What is SPACE for

one observer, is a
mix of space and
time for another !
What is TIME for
one observer, is a
mix of time and
pcos_spmace for another !

Now, static charges produce produces a magnetic field. electric fields.

STR: What is \vec{E} or \vec{B} for one observer, is a mix of $(\vec{E}$ and $\vec{B})$ for another!

$$
\begin{aligned}
& E_{x}^{\prime}=E_{x} \\
& E_{y}^{\prime}=\gamma_{f}\left[E_{y}-\mathrm{v}_{f} B_{z}\right] \\
& E_{z}^{\prime}=\gamma_{f}\left[E_{z}-\mathrm{v}_{f} B_{y}\right]
\end{aligned}
$$

Current (charge in motion)

Faraday-
Lenz
experiments
now make sense!

Faraday's experiments

Loop held fixed; Magnetic field dragged toward left. *NO* Lorentz force $q(\vec{v} \times \vec{B})$

Current: identical!

Strength of B decreased. Nothing is moving, but still, current seen!!!

$$
I \propto \frac{d B}{d t}
$$

Einstein:
Speccial_sticm Theory of Relativity
P. Chaitanya Das, G. Srinivasa Murty,
K. Satish Kumar, T A. Venkatesh and P.C. Deshmukh
'Motion of Charged Particles in Electromagnetic Fields and Special Theory of Relativity’

Resonance, Vol. 9, Number 7, 77-85 (2004)
http://www.ias.ac.in/resonance/July2004/pdf/July2004Classroom3.pdf

Other implications of STR: space-time continuum

INVARIANT INTERVALS?

$$
\vec{\eta}=\frac{d \vec{r}}{d \tau}=\frac{d \vec{r}}{d t / \gamma}=\gamma \frac{d \vec{r}}{d t}=\gamma \overrightarrow{\mathrm{v}} \quad \text { 'velocity' } \xrightarrow{?} \frac{d \vec{r}}{d t}
$$

$$
\eta^{\mu}=\{\gamma c, \gamma \overrightarrow{\mathrm{v}}\}: \text { "4-velocity" }
$$

$$
\eta^{\mu}=\left\{\eta^{0}, \eta^{1}, \eta^{2}, \eta^{3}\right\}=\{\gamma c, \gamma \overrightarrow{\mathrm{v}}\}
$$

$$
\eta^{0} \eta_{0}+\eta^{1} \eta_{1}+\eta^{2} \eta_{2}+\eta^{3} \eta_{3}=c^{2} \text { Lorentz Invariant }
$$

$\eta^{0} \eta_{0}+\eta^{1} \eta_{1}+\eta^{2} \eta_{2}+\eta^{3} \eta_{3}=c^{2}$
$\vec{\eta}=\frac{d \vec{r}}{d \tau}=\gamma \vec{v} \quad \vec{p}=m \vec{\eta}$

$$
\begin{aligned}
p^{\mu}=\left\{p^{0}, p^{1}, p^{2}, p^{3}\right\} & =\{\gamma m c, \gamma m \overrightarrow{\mathrm{v}}\}
\end{aligned}=\left\{\frac{E}{c}, \gamma m \overrightarrow{\mathrm{v}}\right\}
$$

Questions remain!

What's GRAVITY?

Solid
Holds Shape
Fixed Volume

Liquid
Shape of Container
Free Surface
Fixed Volume

Gas
Shape of Container
Volume of Container
() What will be the shape of a tiny little amount of a liquid in a closed (sealed) beaker when this 'liqquid-in-a-beaker’ system is
(a) on earth
(b) orbiting in a satedtitemround the earth.

Gravity - Geometry

The curvature of space-time continuum reproduces the effects that we normally attribute to the gravitational interaction.

The space-time curvature of space-time itself is determined by the presence of matter!

Mass causes the space-time to acquire such a curvature that other matter is attracted toward it.... which is what we have referred to as gravitational attraction!
Einstein's General Theory of Relativity
1915 Field Equetions of GTR

Eddington's experiments

Total eclipse of 29 May 1919.

During the period of the total eclipse,
the Sun would be right in front of the Hyades, a cluster of bright stars.

Hyades ~152 ly
Bellatrix

Orion

Vyadha
Sirius

F. W. Dyson, A. S. Eddington, and C. Davidson, "A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919"

Philosophical Transactions of the Royal Society of London. Series A, (1920): 291-333, on 332.

GTR predicted twice as much deflection of light rays passing the Sun as did STR.

SPIN-ORBITALS
$u_{i}\left(q_{j}\right)=u_{n_{i}, l_{i}, m_{i j}}\left(r_{j}\right) \chi_{m_{s_{i}}}\left(\zeta_{j}\right)$
$\vec{s} \times \vec{s}=i \hbar \vec{s} ; \quad\left[s_{x}, s_{y}\right]=i \hbar s_{z}$
$s^{2}\left|s, m_{s}\right\rangle=\hbar^{2} s(s+1)\left|s, m_{s}\right\rangle$
$s_{z}\left|s, m_{s}\right\rangle=\hbar m_{s}\left|s, m_{s}\right\rangle$
$s=\frac{1}{2}:$ fixed internal
property of an electron

$$
m_{s}=(-s, \ldots ., s)=-\frac{1}{2},+\frac{1}{2}
$$

1928: Dirac STR+QM Relativistic Quantum Mechanics Provided formal basis for electron's spin

Is
Newtonian / Lagrangian / Hamiltonian Mechanics Wrong?

Is Galilean Relativity Wrong?
$-\mathrm{V} \ll 1 ;$
$\mathrm{v} \rightarrow 0 ; \hbar \rightarrow 0$
c

We conclude the unit 6 with a quote from Albert Einstein:

If at first the idea is not absurd, then there is no

Satyendra Nath Bose

Albert Einstein hope for it

- Albert Einstein
-No guarantee that there is hope for every absurd idea!
- Our experience !!!

Next L23: Unit 7
Potentials,
Gradients, Fields pcd@physics.iitm.ac.in
h\#pg/_\&rwowphysics.iitm.ac.in/~labs/amp/

